File: | libs/libsndfile/src/ALAC/alac_encoder.c |
Location: | line 381, column 3 |
Description: | Value stored to 'status' is never read |
1 | /* |
2 | * Copyright (c) 2011 Apple Inc. All rights reserved. |
3 | * Copyright (C) 2012-2013 Erik de Castro Lopo <erikd@mega-nerd.com> |
4 | * |
5 | * @APPLE_APACHE_LICENSE_HEADER_START@ |
6 | * |
7 | * Licensed under the Apache License, Version 2.0 (the "License"); |
8 | * you may not use this file except in compliance with the License. |
9 | * You may obtain a copy of the License at |
10 | * |
11 | * http://www.apache.org/licenses/LICENSE-2.0 |
12 | * |
13 | * Unless required by applicable law or agreed to in writing, software |
14 | * distributed under the License is distributed on an "AS IS" BASIS, |
15 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
16 | * See the License for the specific language governing permissions and |
17 | * limitations under the License. |
18 | * |
19 | * @APPLE_APACHE_LICENSE_HEADER_END@ |
20 | */ |
21 | |
22 | /* |
23 | File: ALACEncoder.cpp |
24 | */ |
25 | |
26 | // build stuff |
27 | #define VERBOSE_DEBUG0 0 |
28 | #define DebugMsgprintf printf |
29 | |
30 | // headers |
31 | #include <stdio.h> |
32 | #include <stdlib.h> |
33 | #include <string.h> |
34 | |
35 | #include "sfendian.h" |
36 | |
37 | #include "alac_codec.h" |
38 | |
39 | #include "aglib.h" |
40 | #include "dplib.h" |
41 | #include "matrixlib.h" |
42 | |
43 | #include "ALACBitUtilities.h" |
44 | #include "ALACAudioTypes.h" |
45 | #include "EndianPortable.h" |
46 | |
47 | typedef enum |
48 | { |
49 | false = 0, |
50 | true = 1 |
51 | } bool ; |
52 | |
53 | static void GetConfig(ALAC_ENCODER *p, ALACSpecificConfig * config ); |
54 | |
55 | static int32_t EncodeStereo(ALAC_ENCODER *p, struct BitBuffer * bitstream, int32_t * input, uint32_t stride, uint32_t channelIndex, uint32_t numSamples ); |
56 | static int32_t EncodeStereoFast(ALAC_ENCODER *p, struct BitBuffer * bitstream, int32_t * input, uint32_t stride, uint32_t channelIndex, uint32_t numSamples ); |
57 | static int32_t EncodeStereoEscape(ALAC_ENCODER *p, struct BitBuffer * bitstream, int32_t * input, uint32_t stride, uint32_t numSamples ); |
58 | static int32_t EncodeMono(ALAC_ENCODER *p, struct BitBuffer * bitstream, int32_t * input, uint32_t stride, uint32_t channelIndex, uint32_t numSamples ); |
59 | |
60 | |
61 | |
62 | // Note: in C you can't typecast to a 2-dimensional array pointer but that's what we need when |
63 | // picking which coefs to use so we declare this typedef b/c we *can* typecast to this type |
64 | typedef int16_t (*SearchCoefs)[kALACMaxCoefs]; |
65 | |
66 | // defines/constants |
67 | const uint32_t kALACEncoderMagic = MAKE_MARKER ('d', 'p', 'g', 'e')((uint32_t) (('d') | (('p') << 8) | (('g') << 16) | (((uint32_t) ('e')) << 24))); |
68 | const uint32_t kMaxSampleSize = 32; // max allowed bit width is 32 |
69 | const uint32_t kDefaultMixBits = 2; |
70 | const uint32_t kDefaultMixRes = 0; |
71 | const uint32_t kMaxRes = 4; |
72 | const uint32_t kDefaultNumUV = 8; |
73 | const uint32_t kMinUV = 4; |
74 | const uint32_t kMaxUV = 8; |
75 | |
76 | // static functions |
77 | #if VERBOSE_DEBUG0 |
78 | static void AddFiller( BitBuffer * bits, int32_t numBytes ); |
79 | #endif |
80 | |
81 | |
82 | /* |
83 | Map Format: 3-bit field per channel which is the same as the "element tag" that should be placed |
84 | at the beginning of the frame for that channel. Indicates whether SCE, CPE, or LFE. |
85 | Each particular field is accessed via the current channel indx. Note that the channel |
86 | indx increments by two for channel pairs. |
87 | |
88 | For example: |
89 | |
90 | C L R 3-channel input = (ID_CPE << 3) | (ID_SCE) |
91 | indx 0 value = (map & (0x7ul << (0 * 3))) >> (0 * 3) |
92 | indx 1 value = (map & (0x7ul << (1 * 3))) >> (1 * 3) |
93 | |
94 | C L R Ls Rs LFE 5.1-channel input = (ID_LFE << 15) | (ID_CPE << 9) | (ID_CPE << 3) | (ID_SCE) |
95 | indx 0 value = (map & (0x7ul << (0 * 3))) >> (0 * 3) |
96 | indx 1 value = (map & (0x7ul << (1 * 3))) >> (1 * 3) |
97 | indx 3 value = (map & (0x7ul << (3 * 3))) >> (3 * 3) |
98 | indx 5 value = (map & (0x7ul << (5 * 3))) >> (5 * 3) |
99 | indx 7 value = (map & (0x7ul << (7 * 3))) >> (7 * 3) |
100 | */ |
101 | static const uint32_t sChannelMaps[kALACMaxChannels] = |
102 | { |
103 | ID_SCE, |
104 | ID_CPE, |
105 | (ID_CPE << 3) | (ID_SCE), |
106 | (ID_SCE << 9) | (ID_CPE << 3) | (ID_SCE), |
107 | (ID_CPE << 9) | (ID_CPE << 3) | (ID_SCE), |
108 | (ID_SCE << 15) | (ID_CPE << 9) | (ID_CPE << 3) | (ID_SCE), |
109 | (ID_SCE << 18) | (ID_SCE << 15) | (ID_CPE << 9) | (ID_CPE << 3) | (ID_SCE), |
110 | (ID_SCE << 21) | (ID_CPE << 15) | (ID_CPE << 9) | (ID_CPE << 3) | (ID_SCE) |
111 | }; |
112 | |
113 | static const uint32_t sSupportediPodSampleRates[] = |
114 | { |
115 | 8000, 11025, 12000, 16000, 22050, 24000, 32000, 44100, 48000 |
116 | }; |
117 | |
118 | |
119 | #if PRAGMA_MARK0 |
120 | #pragma mark - |
121 | #endif |
122 | |
123 | void |
124 | alac_set_fastmode (ALAC_ENCODER * p, int32_t fast ) |
125 | { |
126 | p->mFastMode = fast; |
127 | } |
128 | |
129 | |
130 | /* |
131 | HEADER SPECIFICATION |
132 | |
133 | For every segment we adopt the following header: |
134 | |
135 | 1 byte reserved (always 0) |
136 | 1 byte flags (see below) |
137 | [4 byte frame length] (optional, see below) |
138 | ---Next, the per-segment ALAC parameters--- |
139 | 1 byte mixBits (middle-side parameter) |
140 | 1 byte mixRes (middle-side parameter, interpreted as signed char) |
141 | |
142 | 1 byte shiftU (4 bits modeU, 4 bits denShiftU) |
143 | 1 byte filterU (3 bits pbFactorU, 5 bits numU) |
144 | (numU) shorts (signed DP coefficients for V channel) |
145 | ---Next, 2nd-channel ALAC parameters in case of stereo mode--- |
146 | 1 byte shiftV (4 bits modeV, 4 bits denShiftV) |
147 | 1 byte filterV (3 bits pbFactorV, 5 bits numV) |
148 | (numV) shorts (signed DP coefficients for V channel) |
149 | ---After this come the shift-off bytes for (>= 24)-bit data (n-byte shift) if indicated--- |
150 | ---Then comes the AG-compressor bitstream--- |
151 | |
152 | |
153 | FLAGS |
154 | ----- |
155 | |
156 | The presence of certain flag bits changes the header format such that the parameters might |
157 | not even be sent. The currently defined flags format is: |
158 | |
159 | 0000psse |
160 | |
161 | where 0 = reserved, must be 0 |
162 | p = 1-bit field "partial frame" flag indicating 32-bit frame length follows this byte |
163 | ss = 2-bit field indicating "number of shift-off bytes ignored by compression" |
164 | e = 1-bit field indicating "escape" |
165 | |
166 | The "partial frame" flag means that the following segment is not equal to the frame length specified |
167 | in the out-of-band decoder configuration. This allows the decoder to deal with end-of-file partial |
168 | segments without incurring the 32-bit overhead for each segment. |
169 | |
170 | The "shift-off" field indicates the number of bytes at the bottom of the word that were passed through |
171 | uncompressed. The reason for this is that the entropy inherent in the LS bytes of >= 24-bit words |
172 | quite often means that the frame would have to be "escaped" b/c the compressed size would be >= the |
173 | uncompressed size. However, by shifting the input values down and running the remaining bits through |
174 | the normal compression algorithm, a net win can be achieved. If this field is non-zero, it means that |
175 | the shifted-off bytes follow after the parameter section of the header and before the compressed |
176 | bitstream. Note that doing this also allows us to use matrixing on 32-bit inputs after one or more |
177 | bytes are shifted off the bottom which helps the eventual compression ratio. For stereo channels, |
178 | the shifted off bytes are interleaved. |
179 | |
180 | The "escape" flag means that this segment was not compressed b/c the compressed size would be |
181 | >= uncompressed size. In that case, the audio data was passed through uncompressed after the header. |
182 | The other header parameter bytes will not be sent. |
183 | |
184 | |
185 | PARAMETERS |
186 | ---------- |
187 | |
188 | If the segment is not a partial or escape segment, the total header size (in bytes) is given exactly by: |
189 | |
190 | 4 + (2 + 2 * numU) (mono mode) |
191 | 4 + (2 + 2 * numV) + (2 + 2 * numV) (stereo mode) |
192 | |
193 | where the ALAC filter-lengths numU, numV are bounded by a |
194 | constant (in the current source, numU, numV <= NUMCOEPAIRS), and |
195 | this forces an absolute upper bound on header size. |
196 | |
197 | Each segment-decode process loads up these bytes from the front of the |
198 | local stream, in the above order, then follows with the entropy-encoded |
199 | bits for the given segment. |
200 | |
201 | To generalize middle-side, there are various mixing modes including middle-side, each lossless, |
202 | as embodied in the mix() and unmix() functions. These functions exploit a generalized middle-side |
203 | transformation: |
204 | |
205 | u := [(rL + (m-r)R)/m]; |
206 | v := L - R; |
207 | |
208 | where [ ] denotes integer floor. The (lossless) inverse is |
209 | |
210 | L = u + v - [rV/m]; |
211 | R = L - v; |
212 | |
213 | In the segment header, m and r are encoded in mixBits and mixRes. |
214 | Classical "middle-side" is obtained with m = 2, r = 1, but now |
215 | we have more generalized mixes. |
216 | |
217 | NOTES |
218 | ----- |
219 | The relevance of the ALAC coefficients is explained in detail |
220 | in patent documents. |
221 | */ |
222 | |
223 | /* |
224 | EncodeStereo() |
225 | - encode a channel pair |
226 | */ |
227 | static int32_t |
228 | EncodeStereo(ALAC_ENCODER *p, struct BitBuffer * bitstream, int32_t * inputBuffer, uint32_t stride, uint32_t channelIndex, uint32_t numSamples ) |
229 | { |
230 | BitBuffer workBits; |
231 | BitBuffer startBits = *bitstream; // squirrel away copy of current state in case we need to go back and do an escape packet |
232 | AGParamRec agParams; |
233 | uint32_t bits1, bits2; |
234 | uint32_t dilate; |
235 | int32_t mixBits, mixRes, maxRes; |
236 | uint32_t minBits, minBits1, minBits2; |
237 | uint32_t numU, numV; |
238 | uint32_t mode; |
239 | uint32_t pbFactor; |
240 | uint32_t chanBits; |
241 | uint8_t bytesShifted; |
242 | SearchCoefs coefsU; |
243 | SearchCoefs coefsV; |
244 | uint32_t indx; |
245 | uint8_t partialFrame; |
246 | uint32_t escapeBits; |
247 | bool doEscape; |
248 | int32_t status = ALAC_noErr; |
249 | int32_t bestRes; |
250 | uint32_t numUV, converge; |
251 | |
252 | // make sure we handle this bit-depth before we get going |
253 | RequireAction( (p->mBitDepth == 16) || (p->mBitDepth == 20) || (p->mBitDepth == 24) || (p->mBitDepth == 32), return kALAC_ParamError; )if (!((p->mBitDepth == 16) || (p->mBitDepth == 20) || ( p->mBitDepth == 24) || (p->mBitDepth == 32))) { return kALAC_ParamError ; }; |
254 | |
255 | // reload coefs pointers for this channel pair |
256 | // - note that, while you might think they should be re-initialized per block, retaining state across blocks |
257 | // actually results in better overall compression |
258 | // - strangely, re-using the same coefs for the different passes of the "mixRes" search loop instead of using |
259 | // different coefs for the different passes of "mixRes" results in even better compression |
260 | coefsU = (SearchCoefs) p->mCoefsU[channelIndex]; |
261 | coefsV = (SearchCoefs) p->mCoefsV[channelIndex]; |
262 | |
263 | // matrix encoding adds an extra bit but 32-bit inputs cannot be matrixed b/c 33 is too many |
264 | // so enable 16-bit "shift off" and encode in 17-bit mode |
265 | // - in addition, 24-bit mode really improves with one byte shifted off |
266 | if ( p->mBitDepth == 32 ) |
267 | bytesShifted = 2; |
268 | else if ( p->mBitDepth >= 24 ) |
269 | bytesShifted = 1; |
270 | else |
271 | bytesShifted = 0; |
272 | |
273 | chanBits = p->mBitDepth - (bytesShifted * 8) + 1; |
274 | |
275 | // flag whether or not this is a partial frame |
276 | partialFrame = (numSamples == p->mFrameSize) ? 0 : 1; |
277 | |
278 | // brute-force encode optimization loop |
279 | // - run over variations of the encoding params to find the best choice |
280 | mixBits = kDefaultMixBits; |
281 | maxRes = kMaxRes; |
282 | numU = numV = kDefaultNumUV; |
283 | mode = 0; |
284 | pbFactor = 4; |
285 | dilate = 8; |
286 | |
287 | minBits = minBits1 = minBits2 = 1ul << 31; |
288 | |
289 | bestRes = p->mLastMixRes[channelIndex]; |
290 | |
291 | for ( mixRes = 0; mixRes <= maxRes; mixRes++ ) |
292 | { |
293 | // mix the stereo inputs |
294 | switch ( p->mBitDepth ) |
295 | { |
296 | case 16: |
297 | mix16( inputBuffer, stride, p->mMixBufferU, p->mMixBufferV, numSamples/dilate, mixBits, mixRes ); |
298 | break; |
299 | case 20: |
300 | mix20( inputBuffer, stride, p->mMixBufferU, p->mMixBufferV, numSamples/dilate, mixBits, mixRes ); |
301 | break; |
302 | case 24: |
303 | // includes extraction of shifted-off bytes |
304 | mix24( inputBuffer, stride, p->mMixBufferU, p->mMixBufferV, numSamples/dilate, |
305 | mixBits, mixRes, p->mShiftBufferUV, bytesShifted ); |
306 | break; |
307 | case 32: |
308 | // includes extraction of shifted-off bytes |
309 | mix32( inputBuffer, stride, p->mMixBufferU, p->mMixBufferV, numSamples/dilate, |
310 | mixBits, mixRes, p->mShiftBufferUV, bytesShifted ); |
311 | break; |
312 | } |
313 | |
314 | BitBufferInit( &workBits, p->mWorkBuffer, p->mMaxOutputBytes ); |
315 | |
316 | // run the dynamic predictors |
317 | pc_block( p->mMixBufferU, p->mPredictorU, numSamples/dilate, coefsU[numU - 1], numU, chanBits, DENSHIFT_DEFAULT9 ); |
318 | pc_block( p->mMixBufferV, p->mPredictorV, numSamples/dilate, coefsV[numV - 1], numV, chanBits, DENSHIFT_DEFAULT9 ); |
319 | |
320 | // run the lossless compressor on each channel |
321 | set_ag_params( &agParams, MB010, (pbFactor * PB040) / 4, KB014, numSamples/dilate, numSamples/dilate, MAX_RUN_DEFAULT255 ); |
322 | status = dyn_comp( &agParams, p->mPredictorU, &workBits, numSamples/dilate, chanBits, &bits1 ); |
323 | RequireNoErr( status, goto Exit; )if ((status)) { goto Exit; }; |
324 | |
325 | set_ag_params( &agParams, MB010, (pbFactor * PB040) / 4, KB014, numSamples/dilate, numSamples/dilate, MAX_RUN_DEFAULT255 ); |
326 | status = dyn_comp( &agParams, p->mPredictorV, &workBits, numSamples/dilate, chanBits, &bits2 ); |
327 | RequireNoErr( status, goto Exit; )if ((status)) { goto Exit; }; |
328 | |
329 | // look for best match |
330 | if ( (bits1 + bits2) < minBits1 ) |
331 | { |
332 | minBits1 = bits1 + bits2; |
333 | bestRes = mixRes; |
334 | } |
335 | } |
336 | |
337 | p->mLastMixRes[channelIndex] = (int16_t)bestRes; |
338 | |
339 | // mix the stereo inputs with the current best mixRes |
340 | mixRes = p->mLastMixRes[channelIndex]; |
341 | switch ( p->mBitDepth ) |
342 | { |
343 | case 16: |
344 | mix16( inputBuffer, stride, p->mMixBufferU, p->mMixBufferV, numSamples, mixBits, mixRes ); |
345 | break; |
346 | case 20: |
347 | mix20( inputBuffer, stride, p->mMixBufferU, p->mMixBufferV, numSamples, mixBits, mixRes ); |
348 | break; |
349 | case 24: |
350 | // also extracts the shifted off bytes into the shift buffers |
351 | mix24( inputBuffer, stride, p->mMixBufferU, p->mMixBufferV, numSamples, |
352 | mixBits, mixRes, p->mShiftBufferUV, bytesShifted ); |
353 | break; |
354 | case 32: |
355 | // also extracts the shifted off bytes into the shift buffers |
356 | mix32( inputBuffer, stride, p->mMixBufferU, p->mMixBufferV, numSamples, |
357 | mixBits, mixRes, p->mShiftBufferUV, bytesShifted ); |
358 | break; |
359 | } |
360 | |
361 | // now it's time for the predictor coefficient search loop |
362 | numU = numV = kMinUV; |
363 | minBits1 = minBits2 = 1ul << 31; |
364 | |
365 | for ( numUV = kMinUV; numUV <= kMaxUV; numUV += 4 ) |
366 | { |
367 | BitBufferInit( &workBits, p->mWorkBuffer, p->mMaxOutputBytes ); |
368 | |
369 | dilate = 32; |
370 | |
371 | // run the predictor over the same data multiple times to help it converge |
372 | for ( converge = 0; converge < 8; converge++ ) |
373 | { |
374 | pc_block( p->mMixBufferU, p->mPredictorU, numSamples/dilate, coefsU[numUV-1], numUV, chanBits, DENSHIFT_DEFAULT9 ); |
375 | pc_block( p->mMixBufferV, p->mPredictorV, numSamples/dilate, coefsV[numUV-1], numUV, chanBits, DENSHIFT_DEFAULT9 ); |
376 | } |
377 | |
378 | dilate = 8; |
379 | |
380 | set_ag_params( &agParams, MB010, (pbFactor * PB040)/4, KB014, numSamples/dilate, numSamples/dilate, MAX_RUN_DEFAULT255 ); |
381 | status = dyn_comp( &agParams, p->mPredictorU, &workBits, numSamples/dilate, chanBits, &bits1 ); |
Value stored to 'status' is never read | |
382 | |
383 | if ( (bits1 * dilate + 16 * numUV) < minBits1 ) |
384 | { |
385 | minBits1 = bits1 * dilate + 16 * numUV; |
386 | numU = numUV; |
387 | } |
388 | |
389 | set_ag_params( &agParams, MB010, (pbFactor * PB040)/4, KB014, numSamples/dilate, numSamples/dilate, MAX_RUN_DEFAULT255 ); |
390 | status = dyn_comp( &agParams, p->mPredictorV, &workBits, numSamples/dilate, chanBits, &bits2 ); |
391 | |
392 | if ( (bits2 * dilate + 16 * numUV) < minBits2 ) |
393 | { |
394 | minBits2 = bits2 * dilate + 16 * numUV; |
395 | numV = numUV; |
396 | } |
397 | } |
398 | |
399 | // test for escape hatch if best calculated compressed size turns out to be more than the input size |
400 | minBits = minBits1 + minBits2 + (8 /* mixRes/maxRes/etc. */ * 8) + ((partialFrame == true) ? 32 : 0); |
401 | if ( bytesShifted != 0 ) |
402 | minBits += (numSamples * (bytesShifted * 8) * 2); |
403 | |
404 | escapeBits = (numSamples * p->mBitDepth * 2) + ((partialFrame == true) ? 32 : 0) + (2 * 8); /* 2 common header bytes */ |
405 | |
406 | doEscape = (minBits >= escapeBits) ? true : false; |
407 | |
408 | if ( doEscape == false ) |
409 | { |
410 | // write bitstream header and coefs |
411 | BitBufferWrite( bitstream, 0, 12 ); |
412 | BitBufferWrite( bitstream, (partialFrame << 3) | (bytesShifted << 1), 4 ); |
413 | if ( partialFrame ) |
414 | BitBufferWrite( bitstream, numSamples, 32 ); |
415 | BitBufferWrite( bitstream, mixBits, 8 ); |
416 | BitBufferWrite( bitstream, mixRes, 8 ); |
417 | |
418 | //Assert( (mode < 16) && (DENSHIFT_DEFAULT < 16) ); |
419 | //Assert( (pbFactor < 8) && (numU < 32) ); |
420 | //Assert( (pbFactor < 8) && (numV < 32) ); |
421 | |
422 | BitBufferWrite( bitstream, (mode << 4) | DENSHIFT_DEFAULT9, 8 ); |
423 | BitBufferWrite( bitstream, (pbFactor << 5) | numU, 8 ); |
424 | for ( indx = 0; indx < numU; indx++ ) |
425 | BitBufferWrite( bitstream, coefsU[numU - 1][indx], 16 ); |
426 | |
427 | BitBufferWrite( bitstream, (mode << 4) | DENSHIFT_DEFAULT9, 8 ); |
428 | BitBufferWrite( bitstream, (pbFactor << 5) | numV, 8 ); |
429 | for ( indx = 0; indx < numV; indx++ ) |
430 | BitBufferWrite( bitstream, coefsV[numV - 1][indx], 16 ); |
431 | |
432 | // if shift active, write the interleaved shift buffers |
433 | if ( bytesShifted != 0 ) |
434 | { |
435 | uint32_t bitShift = bytesShifted * 8; |
436 | |
437 | //Assert( bitShift <= 16 ); |
438 | |
439 | for ( indx = 0; indx < (numSamples * 2); indx += 2 ) |
440 | { |
441 | uint32_t shiftedVal; |
442 | |
443 | shiftedVal = ((uint32_t) p->mShiftBufferUV[indx + 0] << bitShift) | (uint32_t) p->mShiftBufferUV[indx + 1]; |
444 | BitBufferWrite( bitstream, shiftedVal, bitShift * 2 ); |
445 | } |
446 | } |
447 | |
448 | // run the dynamic predictor and lossless compression for the "left" channel |
449 | // - note: to avoid allocating more buffers, we're mixing and matching between the available buffers instead |
450 | // of only using "U" buffers for the U-channel and "V" buffers for the V-channel |
451 | if ( mode == 0 ) |
452 | { |
453 | pc_block( p->mMixBufferU, p->mPredictorU, numSamples, coefsU[numU - 1], numU, chanBits, DENSHIFT_DEFAULT9 ); |
454 | } |
455 | else |
456 | { |
457 | pc_block( p->mMixBufferU, p->mPredictorV, numSamples, coefsU[numU - 1], numU, chanBits, DENSHIFT_DEFAULT9 ); |
458 | pc_block( p->mPredictorV, p->mPredictorU, numSamples, NULL((void*)0), 31, chanBits, 0 ); |
459 | } |
460 | |
461 | set_ag_params( &agParams, MB010, (pbFactor * PB040) / 4, KB014, numSamples, numSamples, MAX_RUN_DEFAULT255 ); |
462 | status = dyn_comp( &agParams, p->mPredictorU, bitstream, numSamples, chanBits, &bits1 ); |
463 | RequireNoErr( status, goto Exit; )if ((status)) { goto Exit; }; |
464 | |
465 | // run the dynamic predictor and lossless compression for the "right" channel |
466 | if ( mode == 0 ) |
467 | { |
468 | pc_block( p->mMixBufferV, p->mPredictorV, numSamples, coefsV[numV - 1], numV, chanBits, DENSHIFT_DEFAULT9 ); |
469 | } |
470 | else |
471 | { |
472 | pc_block( p->mMixBufferV, p->mPredictorU, numSamples, coefsV[numV - 1], numV, chanBits, DENSHIFT_DEFAULT9 ); |
473 | pc_block( p->mPredictorU, p->mPredictorV, numSamples, NULL((void*)0), 31, chanBits, 0 ); |
474 | } |
475 | |
476 | set_ag_params( &agParams, MB010, (pbFactor * PB040) / 4, KB014, numSamples, numSamples, MAX_RUN_DEFAULT255 ); |
477 | status = dyn_comp( &agParams, p->mPredictorV, bitstream, numSamples, chanBits, &bits2 ); |
478 | RequireNoErr( status, goto Exit; )if ((status)) { goto Exit; }; |
479 | |
480 | /* if we happened to create a compressed packet that was actually bigger than an escape packet would be, |
481 | chuck it and do an escape packet |
482 | */ |
483 | minBits = BitBufferGetPosition( bitstream ) - BitBufferGetPosition( &startBits ); |
484 | if ( minBits >= escapeBits ) |
485 | { |
486 | *bitstream = startBits; // reset bitstream state |
487 | doEscape = true; |
488 | printf( "compressed frame too big: %u vs. %u \n", minBits, escapeBits )__printf_chk (2 - 1, "compressed frame too big: %u vs. %u \n" , minBits, escapeBits); |
489 | } |
490 | } |
491 | |
492 | if ( doEscape == true ) |
493 | { |
494 | /* escape */ |
495 | status = EncodeStereoEscape(p, bitstream, inputBuffer, stride, numSamples ); |
496 | |
497 | #if VERBOSE_DEBUG0 |
498 | DebugMsg( "escape!: %u vs %u\n", minBits, escapeBits )__printf_chk (2 - 1, "escape!: %u vs %u\n", minBits, escapeBits ); |
499 | #endif |
500 | } |
501 | |
502 | Exit: |
503 | return status; |
504 | } |
505 | |
506 | /* |
507 | EncodeStereoFast() |
508 | - encode a channel pair without the search loop for maximum possible speed |
509 | */ |
510 | static int32_t |
511 | EncodeStereoFast(ALAC_ENCODER *p, struct BitBuffer * bitstream, int32_t * inputBuffer, uint32_t stride, uint32_t channelIndex, uint32_t numSamples ) |
512 | { |
513 | BitBuffer startBits = *bitstream; // squirrel away current bit position in case we decide to use escape hatch |
514 | AGParamRec agParams; |
515 | uint32_t bits1, bits2; |
516 | int32_t mixBits, mixRes; |
517 | uint32_t minBits, minBits1, minBits2; |
518 | uint32_t numU, numV; |
519 | uint32_t mode; |
520 | uint32_t pbFactor; |
521 | uint32_t chanBits; |
522 | uint8_t bytesShifted; |
523 | SearchCoefs coefsU; |
524 | SearchCoefs coefsV; |
525 | uint32_t indx; |
526 | uint8_t partialFrame; |
527 | uint32_t escapeBits; |
528 | bool doEscape; |
529 | int32_t status; |
530 | |
531 | // make sure we handle this bit-depth before we get going |
532 | RequireAction( (p->mBitDepth == 16) || (p->mBitDepth == 20) || (p->mBitDepth == 24) || (p->mBitDepth == 32), return kALAC_ParamError; )if (!((p->mBitDepth == 16) || (p->mBitDepth == 20) || ( p->mBitDepth == 24) || (p->mBitDepth == 32))) { return kALAC_ParamError ; }; |
533 | |
534 | // reload coefs pointers for this channel pair |
535 | // - note that, while you might think they should be re-initialized per block, retaining state across blocks |
536 | // actually results in better overall compression |
537 | // - strangely, re-using the same coefs for the different passes of the "mixRes" search loop instead of using |
538 | // different coefs for the different passes of "mixRes" results in even better compression |
539 | coefsU = (SearchCoefs) p->mCoefsU[channelIndex]; |
540 | coefsV = (SearchCoefs) p->mCoefsV[channelIndex]; |
541 | |
542 | // matrix encoding adds an extra bit but 32-bit inputs cannot be matrixed b/c 33 is too many |
543 | // so enable 16-bit "shift off" and encode in 17-bit mode |
544 | // - in addition, 24-bit mode really improves with one byte shifted off |
545 | if ( p->mBitDepth == 32 ) |
546 | bytesShifted = 2; |
547 | else if ( p->mBitDepth >= 24 ) |
548 | bytesShifted = 1; |
549 | else |
550 | bytesShifted = 0; |
551 | |
552 | chanBits = p->mBitDepth - (bytesShifted * 8) + 1; |
553 | |
554 | // flag whether or not this is a partial frame |
555 | partialFrame = (numSamples == p->mFrameSize) ? 0 : 1; |
556 | |
557 | // set up default encoding parameters for "fast" mode |
558 | mixBits = kDefaultMixBits; |
559 | mixRes = kDefaultMixRes; |
560 | numU = numV = kDefaultNumUV; |
561 | mode = 0; |
562 | pbFactor = 4; |
563 | |
564 | minBits = minBits1 = minBits2 = 1ul << 31; |
565 | |
566 | // mix the stereo inputs with default mixBits/mixRes |
567 | switch ( p->mBitDepth ) |
568 | { |
569 | case 16: |
570 | mix16( inputBuffer, stride, p->mMixBufferU, p->mMixBufferV, numSamples, mixBits, mixRes ); |
571 | break; |
572 | case 20: |
573 | mix20( inputBuffer, stride, p->mMixBufferU, p->mMixBufferV, numSamples, mixBits, mixRes ); |
574 | break; |
575 | case 24: |
576 | // also extracts the shifted off bytes into the shift buffers |
577 | mix24( inputBuffer, stride, p->mMixBufferU, p->mMixBufferV, numSamples, |
578 | mixBits, mixRes, p->mShiftBufferUV, bytesShifted ); |
579 | break; |
580 | case 32: |
581 | // also extracts the shifted off bytes into the shift buffers |
582 | mix32( inputBuffer, stride, p->mMixBufferU, p->mMixBufferV, numSamples, |
583 | mixBits, mixRes, p->mShiftBufferUV, bytesShifted ); |
584 | break; |
585 | } |
586 | |
587 | /* speculatively write the bitstream assuming the compressed version will be smaller */ |
588 | |
589 | // write bitstream header and coefs |
590 | BitBufferWrite( bitstream, 0, 12 ); |
591 | BitBufferWrite( bitstream, (partialFrame << 3) | (bytesShifted << 1), 4 ); |
592 | if ( partialFrame ) |
593 | BitBufferWrite( bitstream, numSamples, 32 ); |
594 | BitBufferWrite( bitstream, mixBits, 8 ); |
595 | BitBufferWrite( bitstream, mixRes, 8 ); |
596 | |
597 | //Assert( (mode < 16) && (DENSHIFT_DEFAULT < 16) ); |
598 | //Assert( (pbFactor < 8) && (numU < 32) ); |
599 | //Assert( (pbFactor < 8) && (numV < 32) ); |
600 | |
601 | BitBufferWrite( bitstream, (mode << 4) | DENSHIFT_DEFAULT9, 8 ); |
602 | BitBufferWrite( bitstream, (pbFactor << 5) | numU, 8 ); |
603 | for ( indx = 0; indx < numU; indx++ ) |
604 | BitBufferWrite( bitstream, coefsU[numU - 1][indx], 16 ); |
605 | |
606 | BitBufferWrite( bitstream, (mode << 4) | DENSHIFT_DEFAULT9, 8 ); |
607 | BitBufferWrite( bitstream, (pbFactor << 5) | numV, 8 ); |
608 | for ( indx = 0; indx < numV; indx++ ) |
609 | BitBufferWrite( bitstream, coefsV[numV - 1][indx], 16 ); |
610 | |
611 | // if shift active, write the interleaved shift buffers |
612 | if ( bytesShifted != 0 ) |
613 | { |
614 | uint32_t bitShift = bytesShifted * 8; |
615 | |
616 | //Assert( bitShift <= 16 ); |
617 | |
618 | for ( indx = 0; indx < (numSamples * 2); indx += 2 ) |
619 | { |
620 | uint32_t shiftedVal; |
621 | |
622 | shiftedVal = ((uint32_t) p->mShiftBufferUV[indx + 0] << bitShift) | (uint32_t) p->mShiftBufferUV[indx + 1]; |
623 | BitBufferWrite( bitstream, shiftedVal, bitShift * 2 ); |
624 | } |
625 | } |
626 | |
627 | // run the dynamic predictor and lossless compression for the "left" channel |
628 | // - note: we always use mode 0 in the "fast" path so we don't need the code for mode != 0 |
629 | pc_block( p->mMixBufferU, p->mPredictorU, numSamples, coefsU[numU - 1], numU, chanBits, DENSHIFT_DEFAULT9 ); |
630 | |
631 | set_ag_params( &agParams, MB010, (pbFactor * PB040) / 4, KB014, numSamples, numSamples, MAX_RUN_DEFAULT255 ); |
632 | status = dyn_comp( &agParams, p->mPredictorU, bitstream, numSamples, chanBits, &bits1 ); |
633 | RequireNoErr( status, goto Exit; )if ((status)) { goto Exit; }; |
634 | |
635 | // run the dynamic predictor and lossless compression for the "right" channel |
636 | pc_block( p->mMixBufferV, p->mPredictorV, numSamples, coefsV[numV - 1], numV, chanBits, DENSHIFT_DEFAULT9 ); |
637 | |
638 | set_ag_params( &agParams, MB010, (pbFactor * PB040) / 4, KB014, numSamples, numSamples, MAX_RUN_DEFAULT255 ); |
639 | status = dyn_comp( &agParams, p->mPredictorV, bitstream, numSamples, chanBits, &bits2 ); |
640 | RequireNoErr( status, goto Exit; )if ((status)) { goto Exit; }; |
641 | |
642 | // do bit requirement calculations |
643 | minBits1 = bits1 + (numU * sizeof(int16_t) * 8); |
644 | minBits2 = bits2 + (numV * sizeof(int16_t) * 8); |
645 | |
646 | // test for escape hatch if best calculated compressed size turns out to be more than the input size |
647 | minBits = minBits1 + minBits2 + (8 /* mixRes/maxRes/etc. */ * 8) + ((partialFrame == true) ? 32 : 0); |
648 | if ( bytesShifted != 0 ) |
649 | minBits += (numSamples * (bytesShifted * 8) * 2); |
650 | |
651 | escapeBits = (numSamples * p->mBitDepth * 2) + ((partialFrame == true) ? 32 : 0) + (2 * 8); /* 2 common header bytes */ |
652 | |
653 | doEscape = (minBits >= escapeBits) ? true : false; |
654 | |
655 | if ( doEscape == false ) |
656 | { |
657 | /* if we happened to create a compressed packet that was actually bigger than an escape packet would be, |
658 | chuck it and do an escape packet |
659 | */ |
660 | minBits = BitBufferGetPosition( bitstream ) - BitBufferGetPosition( &startBits ); |
661 | if ( minBits >= escapeBits ) |
662 | { |
663 | doEscape = true; |
664 | printf( "compressed frame too big: %u vs. %u\n", minBits, escapeBits )__printf_chk (2 - 1, "compressed frame too big: %u vs. %u\n", minBits, escapeBits); |
665 | } |
666 | |
667 | } |
668 | |
669 | if ( doEscape == true ) |
670 | { |
671 | /* escape */ |
672 | |
673 | // reset bitstream position since we speculatively wrote the compressed version |
674 | *bitstream = startBits; |
675 | |
676 | // write escape frame |
677 | status = EncodeStereoEscape(p, bitstream, inputBuffer, stride, numSamples ); |
678 | |
679 | #if VERBOSE_DEBUG0 |
680 | DebugMsg( "escape!: %u vs %u\n", minBits, (numSamples * p->mBitDepth * 2) )__printf_chk (2 - 1, "escape!: %u vs %u\n", minBits, (numSamples * p->mBitDepth * 2)); |
681 | #endif |
682 | } |
683 | |
684 | Exit: |
685 | return status; |
686 | } |
687 | |
688 | /* |
689 | EncodeStereoEscape() |
690 | - encode stereo escape frame |
691 | */ |
692 | static int32_t |
693 | EncodeStereoEscape(ALAC_ENCODER *p, struct BitBuffer * bitstream, int32_t * inputBuffer, uint32_t stride, uint32_t numSamples ) |
694 | { |
695 | uint8_t partialFrame; |
696 | uint32_t indx; |
697 | |
698 | // flag whether or not this is a partial frame |
699 | partialFrame = (numSamples == p->mFrameSize) ? 0 : 1; |
700 | |
701 | // write bitstream header |
702 | BitBufferWrite( bitstream, 0, 12 ); |
703 | BitBufferWrite( bitstream, (partialFrame << 3) | 1, 4 ); // LSB = 1 means "frame not compressed" |
704 | if ( partialFrame ) |
705 | BitBufferWrite( bitstream, numSamples, 32 ); |
706 | |
707 | // just copy the input data to the output buffer |
708 | switch ( p->mBitDepth ) |
709 | { |
710 | case 16: |
711 | for ( indx = 0; indx < (numSamples * stride); indx += stride ) |
712 | { |
713 | BitBufferWrite( bitstream, inputBuffer[indx + 0] >> 16, 16 ); |
714 | BitBufferWrite( bitstream, inputBuffer[indx + 1] >> 16, 16 ); |
715 | } |
716 | break; |
717 | case 20: |
718 | for ( indx = 0; indx < (numSamples * stride); indx += stride ) |
719 | { |
720 | BitBufferWrite( bitstream, inputBuffer[indx + 0] >> 12, 16 ); |
721 | BitBufferWrite( bitstream, inputBuffer[indx + 1] >> 12, 16 ); |
722 | } |
723 | break; |
724 | case 24: |
725 | // mix24() with mixres param = 0 means de-interleave so use it to simplify things |
726 | mix24( inputBuffer, stride, p->mMixBufferU, p->mMixBufferV, numSamples, 0, 0, p->mShiftBufferUV, 0 ); |
727 | for ( indx = 0; indx < numSamples; indx++ ) |
728 | { |
729 | BitBufferWrite( bitstream, p->mMixBufferU[indx] >> 8, 24 ); |
730 | BitBufferWrite( bitstream, p->mMixBufferV[indx] >> 8, 24 ); |
731 | } |
732 | break; |
733 | case 32: |
734 | for ( indx = 0; indx < (numSamples * stride); indx += stride ) |
735 | { |
736 | BitBufferWrite( bitstream, inputBuffer[indx + 0], 32 ); |
737 | BitBufferWrite( bitstream, inputBuffer[indx + 1], 32 ); |
738 | } |
739 | break; |
740 | } |
741 | |
742 | return ALAC_noErr; |
743 | } |
744 | |
745 | /* |
746 | EncodeMono() |
747 | - encode a mono input buffer |
748 | */ |
749 | static int32_t |
750 | EncodeMono(ALAC_ENCODER *p, struct BitBuffer * bitstream, int32_t * inputBuffer, uint32_t stride, uint32_t channelIndex, uint32_t numSamples ) |
751 | { |
752 | BitBuffer startBits = *bitstream; // squirrel away copy of current state in case we need to go back and do an escape packet |
753 | AGParamRec agParams; |
754 | uint32_t bits1; |
755 | uint32_t numU; |
756 | SearchCoefs coefsU; |
757 | uint32_t dilate; |
758 | uint32_t minBits, bestU; |
759 | uint32_t minU, maxU; |
760 | uint32_t indx, indx2; |
761 | uint8_t bytesShifted; |
762 | uint32_t shift; |
763 | uint32_t mask; |
764 | uint32_t chanBits; |
765 | uint8_t pbFactor; |
766 | uint8_t partialFrame; |
767 | uint32_t escapeBits; |
768 | bool doEscape; |
769 | int32_t status = ALAC_noErr; |
770 | uint32_t converge; |
771 | |
772 | |
773 | // make sure we handle this bit-depth before we get going |
774 | RequireAction( (p->mBitDepth == 16) || (p->mBitDepth == 20) || (p->mBitDepth == 24) || (p->mBitDepth == 32), return kALAC_ParamError; )if (!((p->mBitDepth == 16) || (p->mBitDepth == 20) || ( p->mBitDepth == 24) || (p->mBitDepth == 32))) { return kALAC_ParamError ; }; |
775 | |
776 | // reload coefs array from previous frame |
777 | coefsU = (SearchCoefs) p->mCoefsU[channelIndex]; |
778 | |
779 | // pick bit depth for actual encoding |
780 | // - we lop off the lower byte(s) for 24-/32-bit encodings |
781 | if ( p->mBitDepth == 32 ) |
782 | bytesShifted = 2; |
783 | else if ( p->mBitDepth >= 24 ) |
784 | bytesShifted = 1; |
785 | else |
786 | bytesShifted = 0; |
787 | |
788 | shift = bytesShifted * 8; |
789 | mask = (1ul << shift) - 1; |
790 | chanBits = p->mBitDepth - (bytesShifted * 8); |
791 | |
792 | // flag whether or not this is a partial frame |
793 | partialFrame = (numSamples == p->mFrameSize) ? 0 : 1; |
794 | |
795 | // convert N-bit data to 32-bit for predictor |
796 | switch ( p->mBitDepth ) |
797 | { |
798 | case 16: |
799 | // convert 16-bit data to 32-bit for predictor |
800 | for ( indx = 0, indx2 = 0; indx < numSamples; indx++, indx2 += stride ) |
801 | p->mMixBufferU[indx] = inputBuffer[indx2] >> 16; |
802 | break; |
803 | |
804 | case 20: |
805 | // convert 20-bit data to 32-bit for predictor |
806 | for ( indx = 0, indx2 = 0; indx < numSamples; indx++, indx2 += stride ) |
807 | p->mMixBufferU[indx] = inputBuffer[indx2] >> 12; |
808 | break; |
809 | case 24: |
810 | // convert 24-bit data to 32-bit for the predictor and extract the shifted off byte(s) |
811 | for ( indx = 0, indx2 = 0; indx < numSamples; indx++, indx2 += stride ) |
812 | { |
813 | p->mMixBufferU[indx] = inputBuffer[indx2] >> 8; |
814 | p->mShiftBufferUV[indx] = (uint16_t)(p->mMixBufferU[indx] & mask); |
815 | p->mMixBufferU[indx] >>= shift; |
816 | } |
817 | |
818 | break; |
819 | case 32: |
820 | // just copy the 32-bit input data for the predictor and extract the shifted off byte(s) |
821 | for ( indx = 0, indx2 = 0; indx < numSamples; indx++, indx2 += stride ) |
822 | { |
823 | p->mShiftBufferUV[indx] = (uint16_t)(inputBuffer[indx2] & mask); |
824 | p->mMixBufferU[indx] = inputBuffer[indx2] >> shift; |
825 | } |
826 | break; |
827 | } |
828 | |
829 | // brute-force encode optimization loop (implied "encode depth" of 0 if comparing to cmd line tool) |
830 | // - run over variations of the encoding params to find the best choice |
831 | minU = 4; |
832 | maxU = 8; |
833 | minBits = 1ul << 31; |
834 | pbFactor = 4; |
835 | |
836 | bestU = minU; |
837 | |
838 | for ( numU = minU; numU <= maxU; numU += 4 ) |
839 | { |
840 | BitBuffer workBits; |
841 | uint32_t numBits; |
842 | |
843 | BitBufferInit( &workBits, p->mWorkBuffer, p->mMaxOutputBytes ); |
844 | |
845 | dilate = 32; |
846 | for ( converge = 0; converge < 7; converge++ ) |
847 | pc_block( p->mMixBufferU, p->mPredictorU, numSamples/dilate, coefsU[numU-1], numU, chanBits, DENSHIFT_DEFAULT9 ); |
848 | |
849 | dilate = 8; |
850 | pc_block( p->mMixBufferU, p->mPredictorU, numSamples/dilate, coefsU[numU-1], numU, chanBits, DENSHIFT_DEFAULT9 ); |
851 | |
852 | set_ag_params( &agParams, MB010, (pbFactor * PB040) / 4, KB014, numSamples/dilate, numSamples/dilate, MAX_RUN_DEFAULT255 ); |
853 | status = dyn_comp( &agParams, p->mPredictorU, &workBits, numSamples/dilate, chanBits, &bits1 ); |
854 | RequireNoErr( status, goto Exit; )if ((status)) { goto Exit; }; |
855 | |
856 | numBits = (dilate * bits1) + (16 * numU); |
857 | if ( numBits < minBits ) |
858 | { |
859 | bestU = numU; |
860 | minBits = numBits; |
861 | } |
862 | } |
863 | |
864 | // test for escape hatch if best calculated compressed size turns out to be more than the input size |
865 | // - first, add bits for the header bytes mixRes/maxRes/shiftU/filterU |
866 | minBits += (4 /* mixRes/maxRes/etc. */ * 8) + ((partialFrame == true) ? 32 : 0); |
867 | if ( bytesShifted != 0 ) |
868 | minBits += (numSamples * (bytesShifted * 8)); |
869 | |
870 | escapeBits = (numSamples * p->mBitDepth) + ((partialFrame == true) ? 32 : 0) + (2 * 8); /* 2 common header bytes */ |
871 | |
872 | doEscape = (minBits >= escapeBits) ? true : false; |
873 | |
874 | if ( doEscape == false ) |
875 | { |
876 | // write bitstream header |
877 | BitBufferWrite( bitstream, 0, 12 ); |
878 | BitBufferWrite( bitstream, (partialFrame << 3) | (bytesShifted << 1), 4 ); |
879 | if ( partialFrame ) |
880 | BitBufferWrite( bitstream, numSamples, 32 ); |
881 | BitBufferWrite( bitstream, 0, 16 ); // mixBits = mixRes = 0 |
882 | |
883 | // write the params and predictor coefs |
884 | numU = bestU; |
885 | BitBufferWrite( bitstream, (0 << 4) | DENSHIFT_DEFAULT9, 8 ); // modeU = 0 |
886 | BitBufferWrite( bitstream, (pbFactor << 5) | numU, 8 ); |
887 | for ( indx = 0; indx < numU; indx++ ) |
888 | BitBufferWrite( bitstream, coefsU[numU-1][indx], 16 ); |
889 | |
890 | // if shift active, write the interleaved shift buffers |
891 | if ( bytesShifted != 0 ) |
892 | { |
893 | for ( indx = 0; indx < numSamples; indx++ ) |
894 | BitBufferWrite( bitstream, p->mShiftBufferUV[indx], shift ); |
895 | } |
896 | |
897 | // run the dynamic predictor with the best result |
898 | pc_block( p->mMixBufferU, p->mPredictorU, numSamples, coefsU[numU-1], numU, chanBits, DENSHIFT_DEFAULT9 ); |
899 | |
900 | // do lossless compression |
901 | set_standard_ag_params( &agParams, numSamples, numSamples ); |
902 | status = dyn_comp( &agParams, p->mPredictorU, bitstream, numSamples, chanBits, &bits1 ); |
903 | //AssertNoErr( status ); |
904 | |
905 | |
906 | /* if we happened to create a compressed packet that was actually bigger than an escape packet would be, |
907 | chuck it and do an escape packet |
908 | */ |
909 | minBits = BitBufferGetPosition( bitstream ) - BitBufferGetPosition( &startBits ); |
910 | if ( minBits >= escapeBits ) |
911 | { |
912 | *bitstream = startBits; // reset bitstream state |
913 | doEscape = true; |
914 | printf( "compressed frame too big: %u vs. %u\n", minBits, escapeBits )__printf_chk (2 - 1, "compressed frame too big: %u vs. %u\n", minBits, escapeBits); |
915 | } |
916 | } |
917 | |
918 | if ( doEscape == true ) |
919 | { |
920 | // write bitstream header and coefs |
921 | BitBufferWrite( bitstream, 0, 12 ); |
922 | BitBufferWrite( bitstream, (partialFrame << 3) | 1, 4 ); // LSB = 1 means "frame not compressed" |
923 | if ( partialFrame ) |
924 | BitBufferWrite( bitstream, numSamples, 32 ); |
925 | |
926 | // just copy the input data to the output buffer |
927 | switch ( p->mBitDepth ) |
928 | { |
929 | case 16: |
930 | for ( indx = 0; indx < (numSamples * stride); indx += stride ) |
931 | BitBufferWrite( bitstream, inputBuffer[indx] >> 16, 16 ); |
932 | break; |
933 | case 20: |
934 | // convert 20-bit data to 32-bit for simplicity |
935 | for ( indx = 0; indx < (numSamples * stride); indx += stride ) |
936 | BitBufferWrite( bitstream, inputBuffer[indx] >> 12, 20 ); |
937 | break; |
938 | case 24: |
939 | // convert 24-bit data to 32-bit for simplicity |
940 | for ( indx = 0, indx2 = 0; indx < numSamples; indx++, indx2 += stride ) |
941 | { |
942 | p->mMixBufferU[indx] = inputBuffer[indx2] >> 8; |
943 | BitBufferWrite( bitstream, p->mMixBufferU[indx], 24 ); |
944 | } |
945 | break; |
946 | case 32: |
947 | for ( indx = 0; indx < (numSamples * stride); indx += stride ) |
948 | BitBufferWrite( bitstream, inputBuffer[indx], 32 ); |
949 | break; |
950 | } |
951 | #if VERBOSE_DEBUG0 |
952 | DebugMsg( "escape!: %u vs %u\n", minBits, (numSamples * p->mBitDepth) )__printf_chk (2 - 1, "escape!: %u vs %u\n", minBits, (numSamples * p->mBitDepth)); |
953 | #endif |
954 | } |
955 | |
956 | Exit: |
957 | return status; |
958 | } |
959 | |
960 | #if PRAGMA_MARK0 |
961 | #pragma mark - |
962 | #endif |
963 | |
964 | /* |
965 | Encode() |
966 | - encode the next block of samples |
967 | */ |
968 | int32_t |
969 | alac_encode(ALAC_ENCODER *p, uint32_t numChannels, uint32_t numSamples, |
970 | int32_t * theReadBuffer, unsigned char * theWriteBuffer, uint32_t * ioNumBytes) |
971 | { |
972 | uint32_t outputSize; |
973 | BitBuffer bitstream; |
974 | int32_t status; |
975 | |
976 | // create a bit buffer structure pointing to our output buffer |
977 | BitBufferInit( &bitstream, theWriteBuffer, p->mMaxOutputBytes ); |
978 | |
979 | if ( numChannels == 2 ) |
980 | { |
981 | // add 3-bit frame start tag ID_CPE = channel pair & 4-bit element instance tag = 0 |
982 | BitBufferWrite( &bitstream, ID_CPE, 3 ); |
983 | BitBufferWrite( &bitstream, 0, 4 ); |
984 | |
985 | // encode stereo input buffer |
986 | if ( p->mFastMode == false ) |
987 | status = EncodeStereo(p, &bitstream, theReadBuffer, 2, 0, numSamples ); |
988 | else |
989 | status = EncodeStereoFast(p, &bitstream, theReadBuffer, 2, 0, numSamples ); |
990 | RequireNoErr( status, goto Exit; )if ((status)) { goto Exit; }; |
991 | } |
992 | else if ( numChannels == 1 ) |
993 | { |
994 | // add 3-bit frame start tag ID_SCE = mono channel & 4-bit element instance tag = 0 |
995 | BitBufferWrite( &bitstream, ID_SCE, 3 ); |
996 | BitBufferWrite( &bitstream, 0, 4 ); |
997 | |
998 | // encode mono input buffer |
999 | status = EncodeMono(p, &bitstream, theReadBuffer, 1, 0, numSamples ); |
1000 | RequireNoErr( status, goto Exit; )if ((status)) { goto Exit; }; |
1001 | } |
1002 | else |
1003 | { |
1004 | int32_t * inputBuffer; |
1005 | uint32_t tag; |
1006 | uint32_t channelIndex; |
1007 | uint32_t inputIncrement; |
1008 | uint8_t stereoElementTag; |
1009 | uint8_t monoElementTag; |
1010 | uint8_t lfeElementTag; |
1011 | |
1012 | inputBuffer = theReadBuffer; |
1013 | inputIncrement = ((p->mBitDepth + 7) / 8); |
1014 | |
1015 | stereoElementTag = 0; |
1016 | monoElementTag = 0; |
1017 | lfeElementTag = 0; |
1018 | |
1019 | for ( channelIndex = 0; channelIndex < numChannels; ) |
1020 | { |
1021 | tag = (sChannelMaps[numChannels - 1] & (0x7ul << (channelIndex * 3))) >> (channelIndex * 3); |
1022 | |
1023 | BitBufferWrite( &bitstream, tag, 3 ); |
1024 | switch ( tag ) |
1025 | { |
1026 | case ID_SCE: |
1027 | // mono |
1028 | BitBufferWrite( &bitstream, monoElementTag, 4 ); |
1029 | |
1030 | status = EncodeMono(p, &bitstream, inputBuffer, numChannels, channelIndex, numSamples ); |
1031 | |
1032 | inputBuffer += inputIncrement; |
1033 | channelIndex++; |
1034 | monoElementTag++; |
1035 | break; |
1036 | |
1037 | case ID_CPE: |
1038 | // stereo |
1039 | BitBufferWrite( &bitstream, stereoElementTag, 4 ); |
1040 | |
1041 | status = EncodeStereo(p,&bitstream, inputBuffer, numChannels, channelIndex, numSamples ); |
1042 | |
1043 | inputBuffer += (inputIncrement * 2); |
1044 | channelIndex += 2; |
1045 | stereoElementTag++; |
1046 | break; |
1047 | |
1048 | case ID_LFE: |
1049 | // LFE channel (subwoofer) |
1050 | BitBufferWrite( &bitstream, lfeElementTag, 4 ); |
1051 | |
1052 | status = EncodeMono(p, &bitstream, inputBuffer, numChannels, channelIndex, numSamples ); |
1053 | |
1054 | inputBuffer += inputIncrement; |
1055 | channelIndex++; |
1056 | lfeElementTag++; |
1057 | break; |
1058 | |
1059 | default: |
1060 | printf( "That ain't right! (%u)\n", tag )__printf_chk (2 - 1, "That ain't right! (%u)\n", tag); |
1061 | status = kALAC_ParamError; |
1062 | goto Exit; |
1063 | } |
1064 | |
1065 | RequireNoErr( status, goto Exit; )if ((status)) { goto Exit; }; |
1066 | } |
1067 | } |
1068 | |
1069 | #if VERBOSE_DEBUG0 |
1070 | { |
1071 | // if there is room left in the output buffer, add some random fill data to test decoder |
1072 | int32_t bitsLeft; |
1073 | int32_t bytesLeft; |
1074 | |
1075 | bitsLeft = BitBufferGetPosition( &bitstream ) - 3; // - 3 for ID_END tag |
1076 | bytesLeft = bitstream.byteSize - ((bitsLeft + 7) / 8); |
1077 | |
1078 | if ( (bytesLeft > 20) && ((bytesLeft & 0x4u) != 0) ) |
1079 | AddFiller( &bitstream, bytesLeft ); |
1080 | } |
1081 | #endif |
1082 | |
1083 | // add 3-bit frame end tag: ID_END |
1084 | BitBufferWrite( &bitstream, ID_END, 3 ); |
1085 | |
1086 | // byte-align the output data |
1087 | BitBufferByteAlign( &bitstream, true ); |
1088 | |
1089 | outputSize = BitBufferGetPosition( &bitstream ) / 8; |
1090 | //Assert( outputSize <= mMaxOutputBytes ); |
1091 | |
1092 | |
1093 | // all good, let iTunes know what happened and remember the total number of input sample frames |
1094 | *ioNumBytes = outputSize; |
1095 | //mEncodedFrames += encodeMsg->numInputSamples; |
1096 | |
1097 | // gather encoding stats |
1098 | p->mTotalBytesGenerated += outputSize; |
1099 | p->mMaxFrameBytes = MAX( p->mMaxFrameBytes, outputSize )( (p->mMaxFrameBytes)>(outputSize) ?(p->mMaxFrameBytes ): (outputSize) ); |
1100 | |
1101 | status = ALAC_noErr; |
1102 | |
1103 | Exit: |
1104 | return status; |
1105 | } |
1106 | |
1107 | |
1108 | #if PRAGMA_MARK0 |
1109 | #pragma mark - |
1110 | #endif |
1111 | |
1112 | /* |
1113 | GetConfig() |
1114 | */ |
1115 | void |
1116 | GetConfig(ALAC_ENCODER *p, ALACSpecificConfig * config ) |
1117 | { |
1118 | config->frameLength = Swap32NtoB(p->mFrameSize)ENDSWAP_32 (p->mFrameSize); |
1119 | config->compatibleVersion = (uint8_t) kALACCompatibleVersion; |
1120 | config->bitDepth = (uint8_t) p->mBitDepth; |
1121 | config->pb = (uint8_t) PB040; |
1122 | config->kb = (uint8_t) KB014; |
1123 | config->mb = (uint8_t) MB010; |
1124 | config->numChannels = (uint8_t) p->mNumChannels; |
1125 | config->maxRun = Swap16NtoB((uint16_t) MAX_RUN_DEFAULT)ENDSWAP_16 ((uint16_t) 255); |
1126 | config->maxFrameBytes = Swap32NtoB(p->mMaxFrameBytes)ENDSWAP_32 (p->mMaxFrameBytes); |
1127 | config->avgBitRate = Swap32NtoB(p->mAvgBitRate)ENDSWAP_32 (p->mAvgBitRate); |
1128 | config->sampleRate = Swap32NtoB(p->mOutputSampleRate)ENDSWAP_32 (p->mOutputSampleRate); |
1129 | } |
1130 | |
1131 | uint32_t |
1132 | alac_get_magic_cookie_size(uint32_t inNumChannels) |
1133 | { |
1134 | if (inNumChannels > 2) |
1135 | { |
1136 | return sizeof(ALACSpecificConfig) + kChannelAtomSize12 + sizeof(ALACAudioChannelLayout); |
1137 | } |
1138 | else |
1139 | { |
1140 | return sizeof(ALACSpecificConfig); |
1141 | } |
1142 | } |
1143 | |
1144 | void |
1145 | alac_get_magic_cookie(ALAC_ENCODER *p, void * outCookie, uint32_t * ioSize ) |
1146 | { |
1147 | ALACSpecificConfig theConfig = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; |
1148 | ALACAudioChannelLayout theChannelLayout = {0, 0, 0}; |
1149 | uint8_t theChannelAtom[kChannelAtomSize12] = {0, 0, 0, 0, 'c', 'h', 'a', 'n', 0, 0, 0, 0}; |
1150 | uint32_t theCookieSize = sizeof(ALACSpecificConfig); |
1151 | uint8_t * theCookiePointer = (uint8_t *)outCookie; |
1152 | |
1153 | GetConfig(p, &theConfig); |
1154 | if (theConfig.numChannels > 2) |
1155 | { |
1156 | theChannelLayout.mChannelLayoutTag = Swap32NtoB(ALACChannelLayoutTags[theConfig.numChannels - 1])ENDSWAP_32 (ALACChannelLayoutTags[theConfig.numChannels - 1]); |
1157 | theCookieSize += (sizeof(ALACAudioChannelLayout) + kChannelAtomSize12); |
1158 | } |
1159 | if (*ioSize >= theCookieSize) |
1160 | { |
1161 | memcpy(theCookiePointer, &theConfig, sizeof(ALACSpecificConfig)); |
1162 | theChannelAtom[3] = (sizeof(ALACAudioChannelLayout) + kChannelAtomSize12); |
1163 | if (theConfig.numChannels > 2) |
1164 | { |
1165 | theCookiePointer += sizeof(ALACSpecificConfig); |
1166 | memcpy(theCookiePointer, theChannelAtom, kChannelAtomSize12); |
1167 | theCookiePointer += kChannelAtomSize12; |
1168 | memcpy(theCookiePointer, &theChannelLayout, sizeof(ALACAudioChannelLayout)); |
1169 | } |
1170 | *ioSize = theCookieSize; |
1171 | } |
1172 | else |
1173 | { |
1174 | *ioSize = 0; // no incomplete cookies |
1175 | } |
1176 | } |
1177 | |
1178 | /* |
1179 | alac_encoder_init() |
1180 | - initialize the encoder component with the current config |
1181 | */ |
1182 | int32_t |
1183 | alac_encoder_init (ALAC_ENCODER *p, uint32_t samplerate, uint32_t channels, uint32_t format_flags, uint32_t frameSize) |
1184 | { |
1185 | int32_t status; |
1186 | uint32_t indx; |
1187 | int32_t channel, search; |
1188 | |
1189 | p->mFrameSize = (frameSize > 0 && frameSize <= ALAC_FRAME_LENGTH4096) ? frameSize : ALAC_FRAME_LENGTH4096 ; |
1190 | |
1191 | p->mOutputSampleRate = samplerate; |
1192 | p->mNumChannels = channels; |
1193 | switch (format_flags) |
1194 | { |
1195 | case 1: |
1196 | p->mBitDepth = 16; |
1197 | break; |
1198 | case 2: |
1199 | p->mBitDepth = 20; |
1200 | break; |
1201 | case 3: |
1202 | p->mBitDepth = 24; |
1203 | break; |
1204 | case 4: |
1205 | p->mBitDepth = 32; |
1206 | break; |
1207 | default: |
1208 | break; |
1209 | } |
1210 | |
1211 | // set up default encoding parameters and state |
1212 | // - note: mFrameSize is set in the constructor or via alac_set_frame_size() which must be called before this routine |
1213 | for ( indx = 0; indx < kALACMaxChannels; indx++ ) |
1214 | p->mLastMixRes[indx] = kDefaultMixRes; |
1215 | |
1216 | // the maximum output frame size can be no bigger than (samplesPerBlock * numChannels * ((10 + sampleSize)/8) + 1) |
1217 | // but note that this can be bigger than the input size! |
1218 | // - since we don't yet know what our input format will be, use our max allowed sample size in the calculation |
1219 | p->mMaxOutputBytes = p->mFrameSize * p->mNumChannels * ((10 + kMaxSampleSize) / 8) + 1; |
1220 | |
1221 | status = ALAC_noErr; |
1222 | |
1223 | // initialize coefs arrays once b/c retaining state across blocks actually improves the encode ratio |
1224 | for ( channel = 0; channel < (int32_t) p->mNumChannels; channel++ ) |
1225 | { |
1226 | for ( search = 0; search < kALACMaxSearches; search++ ) |
1227 | { |
1228 | init_coefs( p->mCoefsU[channel][search], DENSHIFT_DEFAULT9, kALACMaxCoefs ); |
1229 | init_coefs( p->mCoefsV[channel][search], DENSHIFT_DEFAULT9, kALACMaxCoefs ); |
1230 | } |
1231 | } |
1232 | |
1233 | return status; |
1234 | } |
1235 | |
1236 | /* |
1237 | alac_get_source_format() |
1238 | - given the input format, return one of our supported formats |
1239 | */ |
1240 | void |
1241 | alac_get_source_format(ALAC_ENCODER *p, const AudioFormatDescription * source, AudioFormatDescription * output ) |
1242 | { |
1243 | (void) output ; |
1244 | // default is 16-bit native endian |
1245 | // - note: for float input we assume that's coming from one of our decoders (mp3, aac) so it only makes sense |
1246 | // to encode to 16-bit since the source was lossy in the first place |
1247 | // - note: if not a supported bit depth, find the closest supported bit depth to the input one |
1248 | if ( (source->mFormatID != kALACFormatLinearPCM) || ((source->mFormatFlags & kALACFormatFlagIsFloat) != 0) || |
1249 | ( source->mBitsPerChannel <= 16 ) ) |
1250 | p->mBitDepth = 16; |
1251 | else if ( source->mBitsPerChannel <= 20 ) |
1252 | p->mBitDepth = 20; |
1253 | else if ( source->mBitsPerChannel <= 24 ) |
1254 | p->mBitDepth = 24; |
1255 | else |
1256 | p->mBitDepth = 32; |
1257 | |
1258 | // we support 16/20/24/32-bit integer data at any sample rate and our target number of channels |
1259 | // and sample rate were specified when we were configured |
1260 | /* |
1261 | MakeUncompressedAudioFormat( mNumChannels, (float) mOutputSampleRate, mBitDepth, kAudioFormatFlagsNativeIntegerPacked, output ); |
1262 | */ |
1263 | } |
1264 | |
1265 | |
1266 | |
1267 | #if VERBOSE_DEBUG0 |
1268 | |
1269 | #if PRAGMA_MARK0 |
1270 | #pragma mark - |
1271 | #endif |
1272 | |
1273 | /* |
1274 | AddFiller() |
1275 | - add fill and data stream elements to the bitstream to test the decoder |
1276 | */ |
1277 | static void AddFiller( BitBuffer * bits, int32_t numBytes ) |
1278 | { |
1279 | uint8_t tag; |
1280 | int32_t indx; |
1281 | |
1282 | // out of lameness, subtract 6 bytes to deal with header + alignment as required for fill/data elements |
1283 | numBytes -= 6; |
1284 | if ( numBytes <= 0 ) |
1285 | return; |
1286 | |
1287 | // randomly pick Fill or Data Stream Element based on numBytes requested |
1288 | tag = (numBytes & 0x8) ? ID_FIL : ID_DSE; |
1289 | |
1290 | BitBufferWrite( bits, tag, 3 ); |
1291 | if ( tag == ID_FIL ) |
1292 | { |
1293 | // can't write more than 269 bytes in a fill element |
1294 | numBytes = (numBytes > 269) ? 269 : numBytes; |
1295 | |
1296 | // fill element = 4-bit size unless >= 15 then 4-bit size + 8-bit extension size |
1297 | if ( numBytes >= 15 ) |
1298 | { |
1299 | uint16_t extensionSize; |
1300 | |
1301 | BitBufferWrite( bits, 15, 4 ); |
1302 | |
1303 | // 8-bit extension count field is "extra + 1" which is weird but I didn't define the syntax |
1304 | // - otherwise, there's no way to represent 15 |
1305 | // - for example, to really mean 15 bytes you must encode extensionSize = 1 |
1306 | // - why it's not like data stream elements I have no idea |
1307 | extensionSize = (numBytes - 15) + 1; |
1308 | //Assert( extensionSize <= 255 ); |
1309 | BitBufferWrite( bits, extensionSize, 8 ); |
1310 | } |
1311 | else |
1312 | BitBufferWrite( bits, numBytes, 4 ); |
1313 | |
1314 | BitBufferWrite( bits, 0x10, 8 ); // extension_type = FILL_DATA = b0001 or'ed with fill_nibble = b0000 |
1315 | for ( indx = 0; indx < (numBytes - 1); indx++ ) |
1316 | BitBufferWrite( bits, 0xa5, 8 ); // fill_byte = b10100101 = 0xa5 |
1317 | } |
1318 | else |
1319 | { |
1320 | // can't write more than 510 bytes in a data stream element |
1321 | numBytes = (numBytes > 510) ? 510 : numBytes; |
1322 | |
1323 | BitBufferWrite( bits, 0, 4 ); // element instance tag |
1324 | BitBufferWrite( bits, 1, 1 ); // byte-align flag = true |
1325 | |
1326 | // data stream element = 8-bit size unless >= 255 then 8-bit size + 8-bit size |
1327 | if ( numBytes >= 255 ) |
1328 | { |
1329 | BitBufferWrite( bits, 255, 8 ); |
1330 | BitBufferWrite( bits, numBytes - 255, 8 ); |
1331 | } |
1332 | else |
1333 | BitBufferWrite( bits, numBytes, 8 ); |
1334 | |
1335 | BitBufferByteAlign( bits, true ); // byte-align with zeros |
1336 | |
1337 | for ( indx = 0; indx < numBytes; indx++ ) |
1338 | BitBufferWrite( bits, 0x5a, 8 ); |
1339 | } |
1340 | } |
1341 | |
1342 | #endif /* VERBOSE_DEBUG */ |